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Abstract This study concerns an in®nite plane whose
smoothness is marred by a single defect: either a groove
or a ridge. The blemished plane serves as an electrode
supporting a di�usion-controlled steady-state process.
By using a convenient coordinate transformation, the
local current density at all points on the surface is de-
termined exactly. The results are found to con®rm
intuitive expectations. Thus, compared with normal
values on the plane remote from a groove, the electron
transfer rate is diminished within the groove but en-
hanced along its margins. Similarly, an abnormally
large transfer rate is encountered high on the ridge but
the rate is subnormal on its lower ¯anks. The total
current is demonstrated to be unchanged by the pres-
ence of the blemish.

Key words Electrolysis á Current density á Groove á
Ridge

Introduction

The rate of an electron-exchange reaction on a solid
electrode depends on a variety of factors, including
many that relate to the chemical and physical properties
of the substrate. However, the geometry of the electrode
can also exert considerable in¯uence on the reaction
rate, and it is important in any study of solid-state
electrochemistry to be certain that this geometric factor
is excluded before di�erences in local current density
are attributed to intrinsic properties of the solid. This
article provides an answer to the question of how a
small departure from a regular geometry, a departure
which may be mild enough to escape detection, will
in¯uence the rate of an electrode reaction that would

otherwise be uniform spatially and invariant with time.
Because interest is focused on the electrode shape, other
aspects of the electrode process are as simple as possi-
ble: steady-state di�usive transport with total concen-
tration polarization but without ohmic polarization.

The simplest electrode geometry is the in®nite plane,
and many electrochemical techniques were devised on
the basis of this idealized system [1]. Practical electrodes
may depart from the simple model because they have
edges that need to be taken into account (unless the
electrode is ``shielded'' or unless the linear dimension of
the electrode vastly exceeds the ``distance scale'' of the
experiment) and also because practical electrodes will
not have the in®nite smoothness of the mathematical
model. It is to the second of these departures that this
article is addressed. Following the classical work of
deLevie [2], there continues to be great interest [3±17] in
modeling electrochemistry at electrodes that are uni-
formly ``rough'', a popular contemporary trend being to
treat fractally rough surfaces [18±26]. As with a recent
investigation [27] of the e�ect of a notch on an other-
wise ¯at electrode, the present study will analyze the
e�ect of a single blemish, a groove or a ridge, on the
surface of an otherwise mirror-smooth plane. How this
imperfection a�ects the current density in its vicinity
will be derived by an exact, analytical, approach.

The problem to be solved

Here attention is directed to an electrochemical system
in which the overwhelming majority of the surface of a
working electrode is an in®nite ¯at plane, but a single
linear groove or ridge, such as might arise from an
unintended scratch or crease, sullies that surface. We
seek to determine how this blemish a�ects the current
density in its vicinity. Remote from the groove or ridge,
both in the solution and at the electrode, the current
density will be uniform, directed perpendicularly to the
electrode, and will have its constant ``normal'' value i1.
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The ¯ow of electricity is maintained in the steady state
by the linear concentration gradient of a di�using
electroreactant with respect to which the electrode is
totally concentration polarized.

A cartesian coordinate system may be erected such
that z � 0 is the plane of the majority of the electrode,
most or all of the solution phase occupying positive
z values. The x axis is aligned with the direction of the
blemish, so that there is translational symmetry along
the x direction. The origin of the y axis is chosen such
that y � 0 marks the location of the nonplanar feature.
To learn about how the groove or ridge perturbs the
otherwise simple di�usional situation, we seek to solve
the steady-state two-dimensional version of Fick's sec-
ond law
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oz2
� r2c � 1
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ot
� 0 �1�

subject to the following boundary conditions:

c � 0 at the electrode surface �2�
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� constant � i1

nFD
as z!1 �3�
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� constant � i1
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as y ! �1 �4�
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� 0 as y ! �1 �5�

The terms n, F and D have their usual signi®cances: n is
the number of electrons involved in the electrode reac-
tion, F is Faraday's constant and D is the di�usivity
(di�usion coe�cient) of the electroreactant. Boundary
conditions Eqs.3 and 4 arise from recognizing that,
close to the electrode but far from the imperfection, the
steady-state concentration pro®le will be linear

c � (constant) z � oc
oz

z � i1z
nFD

�6�

Obviously, the linearity of the concentration pro®le
cannot, in practice, extend to in®nity as Eq. 3 supposes.
The ®nal equality in Eq. 6 is imposed to satisfy the
requirements of Fick's ®rst law and Faraday's law.

Of course, in the absence of a defect, Eq. 6 holds at
all locations on the plane. The strategy to be adopted
for ®nding concentrations close to the blemished plane
will be to transform the boundary value problem so that
an equation analogous to Eq. 6 holds globally.

Geometry of the blemish

There is a myriad of possible geometries that the groove
or ridge might adopt. Here the chosen shape of the
blemish in the y, z plane is that described by

y2 � 1�
����������������
w2 � h2
p

2z

" #
�hÿ z� zÿ h�

����������������
w2 � h2
p

2

" #
�7�

where w is a positive length parameter and h is a non-
zero length of either sign. This is certainly not the
simplest geometry for a groove or ridge; our choice is
made for mathematical felicity, as will be evident later.
Figure 1 shows, to scale, the pro®les of several grooves
and ridges that conform to this equation. The number
associated with each pro®le is its ``shape factor'' b, de-
®ned by

b � 8h
����������������
w2 � h2
p����������������

w2 � h2
p ÿ 2h
� �2 �8�

which takes values in the range ÿ1 � b � 1. The dia-
gram shows no examples for shape factors within the
range ÿ0:5 < b < 5, not because these are uninteresting

Fig. 1 Shapes of grooves
and ridges for the shape
factors b as indicated. Both
ordinate and abscissa have
been normalized by division
by jhj, the Lees feature's
depth or height, so that the
pro®les are depicted ``to
scale''
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± on the contrary, values in this range are the most
likely to occur with inadvertently ¯awed ``¯at'' elec-
trodes ± but because such pro®les are too shallow for
e�ective pictorial portrayal.

In Eq. 7 and elsewhere,
����������������
w2 � h2
p

is understood to
represent a positive length, even if h is negative. This
equation describes a feature with bilateral symmetry
about the plane y � 0. The pro®le is simple only if
w � ���

3
p jhj, which inequality is therefore imposed. When

h is positive, Eq. 7 represents a ridge, with h being the
height of the ridge and w its width at half-height.
Negative values of h correspond to a groove of depth
ÿh, with w being the width at half-depth. Thus Eq. 7 is
satis®ed by �y � 0; z � h� and by �y � �1=2w;
z � 1=2h�. We shall describe such a pro®le as a ``Lees
feature'' to acknowledge the work of a pioneer who
used equations of this form to study terrestrial tem-
perature distributions in mountainous regions [28].

The equation of a Lees feature simpli®es to

y2 � ba2�a� z�
4z

ÿ �a� z�2 �9�

in terms of the dimensionless shape factor b and a
characteristic positive length de®ned by

a �
����������������
w2 � h2
p

2
ÿ h �10�

The inequality w � ���
3
p jhj becomes replaced by

ÿ1 � b � 1. Grooves correspond to ÿ1 � b < 0,
whereas ridges are characterized by 0 < b � 1. Note
that as b!1, the product ba2 remains ®nite and be-
comes equal to 4h2. In terms of the b and a parameters,
the dimensions of the Lees feature are

h � a
�����������
1� b
p ÿ 1
ÿ �

2
�11�

and

w � a
���������������������������������������
6� 10

�����������
1� b
p � 3b

p
2

�12�

Note that, at constant b, altering a causes both the
height and width of the blemish to change proportion-
ately, so that its shape remains unchanged.

The dimensions of the blemishes portrayed in Fig. 1
have been normalized in this diagram by division by jhj,
their maximum height or depth. It is evident that the
pro®les are generally smooth curves, but that this is not
the case at each end of the permitted range of shape
factors. When b � ÿ1 there is a sharp discontinuity
with a dihedral angle of 90�, so that the term ``notch''
might be a better descriptor of this shape than
``groove''. The equation of the pro®le in this limiting
case is

y2 � �a� z��a� 2z�
ÿ4z

� �hÿ z�2 2h
z
ÿ 1

� �
�13�

Similarly, Fig. 1 shows the limiting case for a ridge-like
blemish. This corresponds to b!1 as a! 0, but is

more easily recognized in the unsimpli®ed Eq. 7 on
setting w � ���

3
p

h. The limiting ridge has two 90� edges,
obeys the simple equation

y2 � h2 ÿ z2 when jyj < h �14�
and is, in fact, a hemicylinder resting on the in®nite
plane.

The gradient tanfhg of the surface at any point �y; z�
on the electrode equals dz=dy. Its reciprocal may be
found via straightforward di�erentiation of Eq. 9:

dy
dz
� ÿba3

8z2y
ÿ a� z

y
� cotfhg �15�

Squaring this result and adding unity now gives

csc2fhg � b2a6 � 16ba2�a� z�2z2
64z4y2

�16�

after some algebra. One interpretation of this result is
that, if n represents distance measured along the normal
into the solution phase from a point �y; z� on the elec-
trode, then

dn
dy
� ÿcscfhg � �

a
������������������������������������������
b2a4 � 16b�a� z�2z2

q
8z2y

�17�

where the upper/lower signs relate to the ridge/groove
alternatives. Note that these signs were selected because
�dn=dy� for the groove is clearly negative when y is
positive, whereas �dn=dy� is positive for the ridge ge-
ometry. The diagrams in Fig. 2 will clarify these argu-
ments. The equations of this paragraph will ®nd use
later.

Fig. 2 Diagrams showing the relationships between the angle h and
the normal dimension n for a ridge (upper diagram) and a groove.
The angle h is negative for the ridge. s is a length measured along the
feature's surface from its intersection with the z-axis
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Solution for concentration

Following Lees, let us now de®ne a set of modi®ed
coordinates Y ; Z. These are related to the cartesian y; z
coordinates by

Y � y � ba2y

4 y2 � �a� z�2
h i �18�

and

Z � zÿ ba2�a� z�
4 y2 � �a� z�2
h i �19�

The changes in the coordinate system may be consid-
ered to arise from the introduction of a source/sink
doublet [29] positioned at the point y � 0; z � ÿa.
These new coordinates have three properties which
make them valuable for our purpose. First, Z � 0 cor-
responds to Eq. 9, and therefore describes the electrode
surface. Our interest is con®ned to Z � 0 and
ÿ1 < Y <1 . Second, Y and Z become identical with
the cartesian coordinates y and z respectively, as z!1,
and/or y ! �1 , i.e. far from the Lees feature, where
the concentration distribution is described by the simple
boundary conditions (Eqs. 3±5). And third, it is
straightforward to demonstrate that Y and Z satisfy the
Cauchy-Riemann equations [30]

oZ
oz
� oY

oy
and

oZ
oy
� ÿ oY

oz
�20 and 21�

establishing that Y and Z are mutually orthogonal.
Figure 3 compares the two coordinate systems for the
case b � 100.

The Y ; Z coordinates constitute the ideal framework
on which to solve our problem. The di�erential Equa-
tion 1 and its attendant boundary conditions (Eqs. 2±5)
translate directly to

o2c
oY 2
� o2c

oZ2
� r2c � 1
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ot
� 0 �22�

c � 0 at Z � 0 �23�
oc
oZ
� constant � i1

nFD
as Z !1 �24�

oc
oZ
� constant � i1

nFD
as Y ! �1 �25�

and

oc
oY
� 0 as Y ! �1 �26�

Now compare these ®ve equations with the Eq. set 1±5.
The Lees problem in Y ; Z coordinates is seen to cor-
respond exactly to the unblemished plane in y; z coor-
dinates. Thus, by analogy with Eq. 6, it is possible
immediately to recognize

c � i1Z
nFD

�27�

as the simple solution to the Eq. set 22±26. Figure 4
illustrates the equiconcentration surfaces for the
b � ÿ0:64 case.

Solution for current density

The magnitude i of the local current density at the
electrode surface may now be found from the gradient
oc=oZ via the formula

i � nFD
hZ�0

oc
oZ

� �
Z�0

�28�

which incorporates both Faraday's law and Fick's ®rst
law. Here hZ�0 is the metric, or scale factor [31], of the Z
coordinate at the electrode surface. Combination of the
last two equations shows that

i
i1
� 1

hZ�0
�29�

The metric is de®ned in terms of the distance covered as
one moves away normally from the electrode surface
into the solution; if fact hZ�0 is simply �on=oZ�Y where n
is the vector length from a point �y; z� on the surface
measured along the normal into the solution phase, as
introduced earlier. It follows that

i
i1
� oZ

on

� �
Y
�

oZ
oy

� �
Y

on
oy

� �
Y

�30�

The on=oy term in this formula is available from Eq. 17,
but it is not trivial to evaluate �oZ=oy�Y .

Fig. 3 The coordinate system for the b � 100 ridge. Full lines
represent the modi®ed coordinates Y ; Z and broken straight lines are
the cartesian y; z coordinates with which they merge at large distances
from the origin
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We start with the equation

�Z � a�2 � �2y ÿ Y �2 ba2

4y�Y ÿ y� ÿ 1

� �
�31�

which can be derived by eliminating all z terms between
the de®nitions 18 and 19. Then, di�erentiation with
respect to y gives

2�Z � a� oZ
oy

� �
Y
� ba2Y 2�2y ÿ Y �

4y2�Y ÿ y�2 ÿ 4�2y ÿ Y � �32�

Next we replace each Y term by 2y ÿ �a� Z�y=�a� z�,
this equivalence being a consequence of the de®nitions
of the modi®ed coordinates. Finally, on setting Z � 0,
the result

oZ
oy

� �
Y ;Z�0

� ba2�a� 2z�2
8�a� z�z2y ÿ

2y
a� z

�33�

emerges. This expression applies along the normal, at
any point �y; z� on the electrode. Accordingly, it may be
reformulated as

oZ
oy

� �
Z�0
� ba4 � 16�a� z�2z2

8�a� z�z2y �34�

by exploiting relationship 9.
A ®nal expression for the normalized local current

density arises by substituting from Eqs. 34 and 17 into
Eq. 30. After rearrangements, one ®nds

i
i1
�

�������������������������������
a2

�a� z�2 �
16z2

ba2

s
�35�

or, in terms of the dimensions of the feature
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i1
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������������������������������������������������������������������������
w2�h2
p

2 ÿ h
h i2
����������
w2�h2
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2 ÿ h� z
h i2 � 8z2

h
����������������
w2 � h2
p

vuuuut �36�

We have chosen to express the current density i at a
point on the electrode as a function of the z-coordinate
of that point. In principle, a rather more useful for-
mulation would be in terms of the y-coordinate, but we

Fig. 4 Equiconcentration sur-
faces close to a grooved
b � ÿ0:64 electrode. The num-
bers associated with each curve
represent nFDc=i1jhj, where c
is the local concentration

Fig. 5 The lower curve shows
the pro®le of a grooved
electrode for which the
shape factor b equals ÿ0:64.
The upper curve shows the
corresponding ratio of i, the
local current density, to i1,
which is the current density
at a point on the plane
remote from the groove

Fig. 6 As Fig. 5, but for the
b � 100 ridge. In both ®g-
ures, and in Figs. 8 and 9,
the lower curves represent
the true pro®les of the
grooves, i.e. the scales of the
y- and z-coordinates are the
same
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have avoided this to circumvent the solution of awk-
ward cubic equations.

Equation 35 is a remarkably simple result. Figures 5
and 6 show the distribution of current densities for
typical Lees features, one example each of a groove and
a ridge. Note that there is qualitative agreement
between these diagrams and intuitive expectations: the
current density is generally larger than normal where
the surface is convex, but less than normal where it is
concave. There is not a one-to-one correlation between
current density and curvature, however; thus the two
isolated points at which i � i1 are not the in¯ection
points of the pro®les. Some quantitative implications of
Eq. 35 will now be addressed. Its special cases will re-
ceive attention later.

Extreme current densities

As would be expected, the minimum current density at a
groove occurs at the bottom of the groove, and the
current density at a ridge is maximal at its peak. Hence
the extremum iext in the current density is always found
at �y � 0; z � h�. Substitution of z � h into Eq. 35 leads
to the formula

iext
i1
�

��������������������������������
a2

�a� h�2 �
16h2

ba2

s

� 2

1� 1�������
1�b
p � 1� 2h����������������

w2 � h2
p

�37�

which exhibits a very simple dependence on the shape
factor. Some values of the extreme current density are
listed in Table 1, as a function of b and of the cor-
responding height/width ratio. The behavior is seen to
be pleasingly simple in that the current density ranges
from 100% less than normal to 100% more than

normal as one proceeds through Lees features from
the most pronounced groove to the most pronounced
ridge. Moreover, the extreme currents at a ridge and a
groove having the same jhj=w ratio invariably average
to i1.

If we continue to refer to i1 as the ``normal'' current
density, then Table 1 con®rms that the current density
at y � 0 is subnormal for a groove and supernormal for
a ridge. However, as one proceeds away from y � 0, one
eventually encounters the opposite behavior: a super-
normal current density for a groove and a subnormal
current density for a ridge. That this is so is evident on
making a power series expansion of Eq. 35. The ®rst few
terms are

i
i1
� 1ÿ z

a
� �8b� 1�z2

a2
� �8bÿ 1�z3

a3
� . . . �38�

Because z is invariably negative for a groove, one sees
that when the magnitude of z is su�ciently small, then
i > i1. Conversely, because z is positive for a ridge, i
will be subnormal at a su�ciently large distance from
the origin.

Total current

The total current may be found by integrating the
current density over the surface of the blemished plane.
Let I be the current arising from a strip of width L in the
x-direction, then

I �
ZL

0

Z1
ÿ1

i ds dx � L
Z1
ÿ1

i ds �39�

Here s denotes distance measured from the symmetry
plane along the electrode surface, as Fig. 2 illustrates.
Because I is, of course, in®nite, it is the di�erence be-
tween the current at the grooved or ridged electrode and
that, Iplane, at an unblemished planar electrode that is
accessible. In fact, it is the quantity

I ÿ Iplane
Lwi1

� 1

wi1

Z1
ÿ1

i dsÿ
Z1
ÿ1

i1dy

24 35 �40�

that will be evaluated. This is a suitably normalized
quantity re¯ecting the di�erence in total current caused
by the groove or ridge.

In the limiting steady state, the total current is con-
trolled by factors dissociated from the electrode surface,
and one may therefore expect that the presence of the
Lees feature will not have a�ected the total current.
Thus an astute prediction is that the quantity in Eq. 40
will be zero. Establishing that this is, indeed, true will
validate our treatment.

Table 1 The current density displays a minimum or a maximum at
y � 0. Values of this extreme value iext, compared to the current
density i1 remote from the defect, are shown here for various
values of the ratio of the height (or depth) of the blemish to its
width.

h/w b iext=i1

)0.5774 )1 0
)0.5 )0.997 0.106
)0.4 )0.978 0.257
)0.3 )0.927 0.425
)0.2 )0.809 0.608
)0.1 )0.554 0.801
0 0 1
0.1 1.271 1.199
0.2 3.984 1.392
0.3 12.709 1.575
0.4 44.907 1.743
0.5 320.997 1.894
0.5774 1 2
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By analogy with the discussion surrounding Eq. 15,
aided by inspection of Fig. 2, it follows that

ds �
���������������������������
�dy�2 � �dz�2

q� �
Z�0

�
�����������������������
1� dz

dy

� �2
s24 35

Z�0

dy � secfhg dy
�41�

On combining the last two equations, and recognizing
the symmetry about the y � 0 plane, we arrive at

I ÿ Iplane
Lwi1

� 2

wi1

Z1
0

�i secfhg ÿ i1� dy �42�

or equivalently, since dy � cotfhg dz

Iplane ÿ I
Lwi1

� 2

w

Z0
h

i
i1

cscfhg ÿ cotfhg
� �

dz �43�

Expressions for i=i1; cscfhg and cotfhg are available
from Eqs. 35, 17 and 15. When these are inserted into
Eq. 43, and y is then replaced by recourse to Eq. 9, one
®nds that

Iplane ÿ I
Lwi1

� 1

2w

Zh

0

8�a� z�2zÿ ba3�����������������������������������������������������
ba2�a� z�3zÿ 4�a� z�4z2

q dz �44�

is the expression that is expected to evaluate to zero.
Unfortunately, this complicated integral has de®ed an-
alytical solution. However, taking b � ÿ0:64, which
corresponds to a typical groove, the equivalent sum-
mation

2�����
63
p

X
f

�10� �5� f�2f�D�������������������������������������������������
ÿf�5� f�3�4� 5f� f2�

q �45�

in which f replaces z=h and takes the values
D; 2D; 3D; . . . ; 1ÿ D; and 1, was evaluated numerically.

Figure 7 shows how the magnitude of the quantity in
expression 45 changes as D, the summation or integra-
tion interval, adopts progressively smaller values. Evi-
dently the sum approaches zero steadily (interestingly,
as

����
D
p

) as the numerical integration improves in preci-
sion. We regard this as proof that the integral in Eq. 44
vanishes and, by extension, as a vindication of the
treatment.

Limiting cases

Though their existence is incidental to the main purpose
of this article, the two values of the shape factor b that
mark the limits of its permitted range correspond to
geometries which are su�ciently di�erent from typical
grooves and ridges to warrant special consideration.
These two instances of the Lees feature, that will
henceforth be refered to as the ``notch'' and ``hemicyl-
inder'' cases, correspond to pro®les with a width-to-
depth or width-to-height ratio of

���
3
p

. The simpli®ed
equations that describe their pro®les were reported as
Eqs. 13 and 14.

The current density ¯owing to the notch is illustrated
in Fig 8 and given by

i
i1
� �zÿ h� ���������������������������h2 � 2hzÿ z2

p

h z
2ÿ h
ÿ � �46�

which is the b � ÿ1; a � ÿ2h version of Eq. 35. In in-
terpreting Eq. 46, recognize that both h and z are neg-
ative. The current density is zero at the seat of the
notch, which is consistent with the known voltammetric
behaviour of right-angled grooves [32, 33]. Moving
away from the notch, i rises steadily but diminishingly
to become normal at y � �1:51427h; z � 0:328538h.
Beyond this, the current density is supernormal,
reaching a maximum value of 1:038786i1 at
y � �2:83929h; z � 0:160713h before declining back
towards normality.

Turning to the other limit, the hemicylindrical case,
we ®nd that the expression for the current density is
even simpler. When the parameter limits a! 0;
ba2 ! 4h2 are taken, Eq. 35 simpli®es to

i
i1
� 2z

h
� 2

���������������
h2 ÿ y2

p
h

jyj � h �47�

This formula is restricted to the curved portion of the
surface. To evaluate the current density over the ¯at
region of the electrode, outside the realm of the hemi-
cylindrical blemish, ®rst recognize that the taking of the
a! 0; ba2 ! 4h2 limit of Eq. 9 requires that z! 0 such
that

a
z
� y2 ÿ h2

h2
jyj � h �48�

The corresponding limit of Eq. 35 is therefore seen to be

Fig. 7 The points in this logarithmic plot show how the magnitude of
the quantity in expression 45 depends on D. The line has a slope of
0.522
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i
i1
� y2 ÿ h2

y2
jyj � h �49�

Figure 9, based on Eqs. 47 and 49, shows the current
density distribution corresponding to b � 1. The
maximum current density is 2i1 on the summit of the
ridge; the minimum is zero at each piedmont.

In the b � 1 limiting case, the total current is easily
found analytically. The excess current ¯owing to a strip
of the hemicylinder of width L in the x-dimension, over
and above that would ¯ow to that region in the absence
of the blemish, is

2L
Zph=2

0

i dsÿ 2Lhi1 � 2Lh
Zh

0

i dy���������������
h2 ÿ y2

p ÿ i1

24 35
� 2Lhi1

�50�

where the integration was accomplished with the aid of
Eq. 47. This excess represents an exact doubling of the
total current ¯owing to the blemished region ÿh < y
< h. On the ¯at region outside the hemicylinder, the
corresponding excess current is

2L
Z1

ph=2

i dsÿ
Z1
h

i1 dy

264
375 � 2L

Z1
h

�iÿ i1�dy � ÿ2Lhi1

�51�
where, in this zone, Eq. 49 provided the integrand. As
expected, the excess current ¯owing to the hemicylinder
is exactly compensated by the shortfall on the ¯at re-
gion adjoining the blemish.

Summary

The steady-state distribution of current density on a
grooved or ridged in®nite plane has been derived ex-
actly, for shapes drawn from a class that we have
termed ``Lees features''. Equation 36, which describes
that distribution in terms of the height h and width w of
a ridge, is valid for any height and any width less than���
3
p

h. The same equation holds for grooves of depth ÿh
and of any width w not exceeding

���
3
p jhj. The conclu-

sions, of which samples are shown in Figs. 5, 6, 8 and 9,
accord with, and provide quantitative support for, in-
tuitive expectations. Compared with that on regions of
the plane remote from the Lees feature, current densi-
ties are diminished in the interior of grooves and on the
lower ¯anks of ridges, but are enhanced along the
margins of the grooves and near the summits of the
ridges. At the bottom of the groove, the current density
may be very small, even being zero in extreme condi-
tions. Hence, as is well known by electroplaters and
electromachinists, di�usion-controlled steady-state elec-
trodeposition may worsen surface blemishes, while
electrodissolution will tend to heal such defects.
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